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Abstract: This study explored students' reflective plausible reasoning in solving inequality problem. This 

explorative study with the qualitative approach was conducted to seven subjects. Data are derived from the 

result of written answer, think aloud, and interview. The data from those subjects were analyzed using a 

constant comparative method so that it was obtained the same characteristics of reflective plausible reasoning. 

In this article, the authors described two subjects. The results of this study were the characteristics of students' 

reflective plausible reasoning shown by these behaviors: (1) students gave the argumentations based on 

intrinsic mathematical properties during solving inequality problem, (2) students experienced state of perplexity 

in problem solving process, (3) students realized that there was inaccuracy in the problem solving process 

which is indicated by feeling suspicious, doubtful, or curious, (4) students conducted inquiry to correct their 

error until they found the right solution, and (5) students experienced state of steadiness which is indicated by 

feeling sure and satisfied toward the truth of the result.  
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I. Introduction 
Reasoning and problem solving are two components which are close interrelated. The researchers and 

psychologist have tried to get the students’ reasoning process by analyzing their argumentation during problem 

solving. Chi, Bassok, Lewis, Reimann, and Glaser [1] examine the students' argumentation in problem solving 

as the way to get deep knowledge that is being the basis of success in problem solving. Chi et al. conclude that 

successful problem solver is the one who can make the inference from the given information and give the 

explanation about the activity done in problem solving.  

Mathematical reasoning is one of a basic mathematics competence that is essential to be trained to the 

students. Basic mathematics competence includes problem solving ability, reasoning ability, and conceptual 

understanding [2]. Mathematical reasoning is vital to be used in understanding mathematics. By the 

mathematical reasoning, mathematics can be understood by student meaningfully [3]. Mathematical reasoning is 

very important for mathematics education research. Kamol and Har [4] reveal the importance of knowing the 

way of students’ thinking and reasoning to increase the students’ learning achievement in mathematics, 

especially the success in mathematical problem solving. Peretz [5] emphasizes that students need to reason and 

develop the reasoning on their mind. 

Polya [6] divides reasoning into two kinds, namely demonstrative reasoning and plausible reasoning. In 

plausible reasoning, the main thing is to differentiate a more reasonable guess from a less reasonable guess, 

whereas in demonstrative reasoning the main thing is to differentiate a proof from a guess, that is the 

demonstration of a valid proving from the effort of an invalid proving. Furthermore, Polya explains that people 

assure their knowledge by demonstrative reasoning, but they support their conjecture by plausible reasoning. 

Polya views the inductive reasoning as the certain case of plausible reasoning. The demonstrative reasoning is 

also called as strict reasoning [6] or proof reasoning [7].  
By referring to the Polya’s idea about plausible reasoning but it is not the definition, Lithner [7] 

characterizes the reasoning process of university students in solving mathematical task into two kinds, namely 

plausible reasoning (PR), and reasoning based on established experience. Furthermore, the latter term is 

abbreviated by EE. PR and EE are the extension of analytical thinking process and pseudo-analytical thinking 

process proposed by Vinner [8]. The analytical thinking process happens when a person faces a structure of a 

complex problem and his/her scheme does not reach it, so the person will solve the problem into simpler parts 

that can be reached out. The difference between analytical thinking process and PR is the degree of certainty in 

reasoning. The degree of certainty in PR is higher than analytical thinking process. Meanwhile, the difference 

between pseudo-analytical thinking process and EE is on the degree of analyticity. The pseudo-analytical 

thinking process is not analytical thinking process, but EE has analytical thinking content, though only a few. 

Students who apply pseudo-analytical thinking process can produce a wrong solution or a right solution.  
Lithner [7] defines PR in mathematical task solving if the argumentation: (i) is based on mathematical 

properties of the component involved in the reasoning, and (ii) is meant to guide toward the truth without 

necessarily having to be complete and correct. This component is related to the fact, concept, definition, 

operation, principle (axiom, property, theorem, lemma, or corollary), action, process, object, procedure, or 
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heuristic. Lithner explains that plausible reasoning is an extended and a looser version of proof reasoning, but it 

is still based on the mathematical property. This mathematical property refers to intrinsic mathematical property. 

The intrinsic mathematical property is a property that is relevant to mathematical task solving. It is accepted by 

mathematical society as correct. The opponent of the intrinsic mathematical property is surface property. The 

surface property has no (or a little) relevance to task solving. Plausible reasoning includes proof as a special case 

with the difference that proof requires to a higher degree of certainty in the formal mathematical proof, such as: 

complete, correct, and based on deductive logic. Reasoning will be called EE if the argumentation: (i) is based 

on the ideas and procedures built on the one's previous experience from the learning environment, and (ii) is 

meant to guide toward the truth without necessarily having to be complete and correct [7]. Condition (ii) in the 

definition of EE is same as the condition (ii) in the definition of PR because the purpose of reasoning is same. 

The fundamental difference between the definition of PR and EE is on the argumentation as described by the 

condition (i). In EE, the argumentation is commonly the transfer of property from one situation of familiar task 

solving to another situation that has some similarity. Reasoning done by students in EE is often superficial, 

without considering intrinsic mathematical property from the component involved in the reasoning. Students use 

the procedure of task solving only based on their previous experience without understanding. In this study, PR is 

defined as reasoning by giving argumentation based on intrinsic mathematical properties. Whereas EE is 

reasoning by giving argumentation based on idea and procedure constructed from the previous experience 

without deep understanding.  

The studies about PR and EE in solving mathematical task have been examined by some researchers 

[7], [9], [10], [11]. Cawley [9] finds that many university students use EE in solving the task of linear equation. 

Rofiki et al. [11] find that university student gets the right answer in the problem solving of the quadratic 

equation but the university student cannot give argumentation based on intrinsic mathematical properties. The 

university student only transfers the old knowledge to solve the problem without deep understanding. Hence, the 

university student applies EE. Meanwhile, Lithner shows that many university students do EE and they get 

difficulty in doing PR [7], [10].  

Students maybe have a difficulty in problem solving so that they do reflective thinking process. Dewey 

[12] defines that reflective thinking as active, continue, and careful thinking which supported a 

conviction/knowledge and an invention of problem solution. John Dewey is the first expert who introduces the 

idea of reflective thinking process in education. Furthermore, Dewey explains that reflective thinking process 

moves from a perplexity state (also being called as disequilibrium) as unclear situation, doubtfulness, conflict, 

and disorder thinking to a clear situation, coherence, harmony, and steady state (equilibrium). Perplexity 

happens when the student faces a problem situation that the complete solution scheme has not been known 

clearly. The student's internal experience has not been wholly used maximally. This condition became one cause 

of disequilibrium and unsteadiness thinking. This will awake student's intention to balance his/her thinking 

process so that it will encourage the student to solve the problem, i.e. to start the inquiry process. Hence, it can 

be concluded that reflective thinking process is thought process happened when a student experiences perplexity 

and do the inquiry to find the solution of the problem. By referring to the definition of PR and Dewey's 

definition of reflective thinking, reflective plausible reasoning in this study is defined as PR followed by 

reflective thinking process in problem solving. 

One of the ways that can be used to explore students’ plausible reasoning is using problem solving. The 

students are asked to solve inequality problem (non-routine task). The inequality problem in this study is the 

question of inequality that can be understood by students and it is challenging for them but it cannot be solved 

by a routine procedure that known by them. To gain the right procedure, it is needed a deep thinking and 

analysis. In other words, students have the aim to solve the problem but the complete solution scheme is not 

available immediately on their mind. 

Inequality, particularly the solution set of inequality is an essential concept in calculus because the 

main discourse of calculus involves function concept and analysis of the function property. The analysis of the 

property of particular function needs the solution set of inequality such as in determining the domain of the 

irrational function. Moreover, the solution set of inequality is needed to find the monotonicity and concavity of 

functions by applying the derivative concept. Consequently, students need to understand the inequality concept 

well in order to gain success in learning calculus. Students also need to learn inequality concept to build 

comprehension in trigonometry, geometry, discrete mathematics, linear programming, algebra, and real analysis.   

The inequality concept becomes an interesting topic to be studied. Because of the importance of 

inequality concept in calculus and the other fields of mathematics, this causes increasing studies about 

inequality. Yet, some studies show that students get difficulty in solving the inequality problem. Bazzini and 

Tsamir [13] find that many students have some problems to solve algebraic inequality. Meanwhile, Fujii [14] 

finds that students experience difficulty in finding the solution set of inequality which yield real number set. 

Sierpinska [15] finds the candidate of mathematics and statistics university students who does not realize their 

error in determining the solution set of absolute value inequalities. Students do not know whether their answer is 
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Figure 1. The position of EE, LPR, GPR, and PR 

correct or wrong. Students depend on lecturer's argumentation about the truth of their answer. Students can 

solve the problems that have the similar steps with the example from their lecturer but to solve the other 

problems that need PR, the students cannot give argumentations based on intrinsic mathematical properties.  

The purpose of this study is to explore students’ reflective plausible reasoning in solving inequality 

problem. Educators can use the result of this study as consideration for designing the learning strategies to 

increase the students’ reflective plausible reasoning in the mathematics classroom. In addition, the result also 

gives the contribution to researchers as the theoretical framework or empirical facts about reflective plausible 

reasoning and inequality problem.  

 

II. Reasoning Structure And Characterization 
Lithner uses the term of reasoning to all kinds of reasoning that related to mathematical task solving 

[7], [10]. The mathematical task can be an exercise (routine tasks) and a problem (non-routine tasks). 

Furthermore, Lithner defines reasoning as the line of thinking or the way of thinking that is used to produce 

statements and reach a conclusion in task solving. Related to reasoning, argumentation and justification solution 

are essential to reinforce or refuse a statement. Justification refers to the act of defending or clarifying 

statements [16]. While the argumentation is confirmation (verification), part of the reasoning aimed to convince 

oneself or others that the performed reasoning is correct [7], [10]. 

To solve a mathematical task, students can solve a set of subtasks. The way that can be used to describe 

the reasoning in solving mathematical task is by structuring student's reasoning through 4 steps, namely 1) A 

problematic situation, 2) strategy choice, 3) strategy implementation, and 4) conclusion [7], [10]. This reasoning 

structure describes the line of student's reasoning in solving mathematical task starting from face the task to 

conclude the obtained result. 

Lithner [10] proposed the modification of reasoning characterization by introducing the term of local 

plausible reasoning (LPR) and global plausible reasoning (GPR). Reasoning in mathematical task solving is 

called LPR if it satisfies at least one of the following two conditions: (i) the strategy choice is based on 

identifying similar surface properties in the task and component of situations in the text, but PR is used locally 

to determine whether the procedure can be copied to solve the task or not, or (ii) The strategy implementation is 

mostly based on copying the solution procedure from the identified situation, but one or a few local steps of this 

procedure are modified by construction of PR [10]. While reasoning in mathematical task solving is called GPR 

if it satisfies at least one of the following two conditions: (i) the strategy choice is mostly based on analysis and 

consideration of intrinsic mathematical properties from the components in the task. The idea is constructed and 

supported by PR, or (ii) the strategy implementation is mostly supported by PR [10]. The similarity between 

LPR and GPR is in the existence of PR whereas the difference is the range of PR. GPR concerns the whole 

solution by the implementation of PR globally while LPR applies PR locally. If a mathematical task is 

impossible to be solved by EE or LPR, then GPR or PR needs to be applied. 

Based on the explanation above, LPR (GPR) is defined as PR applied locally (globally) in the whole of 

problem solving. In LPR, the student gives argumentation only in a few local parts by considering the intrinsic 

mathematical properties. While in GPR, argumentation is mainly based on considering the intrinsic 

mathematical properties. 

The authors further make the position of Lithner’s reasoning characterization based on the lens of the 

range of argumentation based on intrinsic mathematical properties (the lens of PR) in the of problem solving. 

The reasoning characterization includes EE, LPR, GPR, and PR. The position of the reasoning characterization 

is not discrete, but it is continuous. The authors relate this position with fuzzy theory. In the universe of a crisp 

set (a classical set), a membership function for a set (also called characteristic function, indicator function, or 

discrimination function) is expressed explicitly with 0 (if it is the element of a set) and 1 (if it is not an element 

of a set). Whereas fuzzy set allows the membership function to all values in the interval      . In other words, a 

membership function of a crisp set only has exactly two values (0 and 1) while membership function of the 

fuzzy set is a continuous function with range      . EE is not PR so the value of EE’s membership function (also 

called membership degree) is 0 while the value of PR’s membership function is 1. The membership degree of 

LPR and GPR is    
 

 
  and  

 

 
   , respectively. EE (PR) is shown in the leftmost position (the rightmost 

position). The membership degree refers to the whole of PR. The membership function moves increasingly from 

the leftmost to the rightmost. The position of EE, LPR, GPR, and PR is shown in Figure 1. 
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Students need to do the process of reflective thinking when they find imprecision in the process of 

problem solving. The reflective thinking is very crucial for the students because it is a rearrangement of thinking 

in order to understand and solve the problem. The role of the reflective thinking is that making students believe 

(or do not believe) their solution. If students do the reflective thinking until correcting the mistakes or finding 

the solution, then they will feel sure on their solution. On the contrary, students will not believe their solution if 

they have done the reflective thinking but they are not able to find the solution. The cause of students' failure in 

finding the solution of the problem is not optimally the process of their reflective thinking. 

Relating to the reasoning characterization previously, the authors make the reasoning characterization 

with the lens of the existence of reflective thinking process. EE (LPR, GPR, or PR) followed by a process of 

reflective thinking in problem solving is called by a reflective EE (a reflective LPR, a reflective GPR, or a 

reflective PR), whereas EE (LPR, GPR, or PR) that is not followed by a process of reflective thinking in 

problem solving is called by a non-reflective EE (a non-reflective LPR, a non-reflective GPR, or a non-

reflective PR). A reflective EE (a reflective LPR, a reflective GPR, a reflective PR, a non-reflective LPR, a non-

reflective GPR, or a non-reflective PR) is abbreviated as RfEE (RfLPR, RfGPR, RfPR, NRfEE, NRfLPR, 

NRfGPR, or NRfPR). The position of reasoning characterization (RfEE, RfLPR, RfGPR, RfPR, NRfEE, NRfLPR, 

NRfGPR, and NRfPR) is presented in Figure 2. 

 

 

 

 

 

 

 

 

 

III. Method 
This type of study was exploratory study using the qualitative approach. The number of undergraduate 

students included in this study was 41. The students are from a university located in East Java, Indonesia. The 

students who become the candidate of research subjects are not randomly selected, but they are chosen by 2 

criteria, namely intending to be a subject and getting a recommendation from their lecturer. Furthermore, 

students who do RfPR are selected as research subjects while students who do RfLPR, RfGPR, RfPR, NRfEE, 

NRfLPR, NRfGPR, or NRfPR are not chosen as research subjects. Subject selection is done continuously until 

obtaining a saturation of data. The saturation of data means that the subject to each group has the same pattern. 

The data were analyzed with the constant comparative method. The method is called the constant comparative 

method because the analysis of the data in this study compares the data with the other data constantly, and then 

it compares the category with the other categories regularly [17], [18]. 

The data collection was carried out by giving a task of inequality problem solving to the subjects. The 

problem is to determine the set of all real numbers   that satisfies the inequality           . The 

subjects were asked to express aloud any words what their thinking at first receiving a problem to solving the 

problem. The authors recorded the subjects’ utterance and the subjects’ behavior, including the unique things 

done by the subjects when solving the problem. This data collection is called think aloud [3], [7], [10] or think 

out loud/TOL [19]. The think aloud method can be used to explore the process of students’ cognition/thinking 

that can not be observed when students solve a problem [3].  

The authors also interviewed the subjects to get information about data of RfPR that has not been revealed in 

the written data and the think aloud. In addition, this interview was conducted for confirming the subjects’ work. 

In the interview process, the subjects were asked to justify and explain what has been done and give reasons 

why they do or answer like that. The authors also recorded the subjects’ conversation and the subject's behavior 

during the interview. After collecting the data, the authors transcribed the recording of the think aloud and the 

interview. Afterward, the authors analyzed the data from the result of the written answer, the think aloud, and 

the interview to get the characteristics of RfPR. 

The reflective 

thinking process 
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Figure 2. The position of reasoning characterization 



Reflective Plausible Reasoning in Solving Inequality Problem 

DOI: 10.9790/7388-070101101112                                   www.iosrjournals.org                                     105 | Page 

Figure 3. The S1’s written answer in the first case          

IV. Results And Discussion 
Of the 41 students in this study, 19 students did EE (15 NRfEE and 4 RfEE), 10 students did LPR (7 

NRfLPR and 3 RfLPR), 4 students did GPR (2 NRfPR and 2 RfGPR), and 8 students did PR (1 NRfPR and 7 

RfPR). The following Table 1 shows the distribution of students’ reasoning in solving inequality problem.  

Table 1. The distribution of students’ reasoning in solving inequality problem 

 

 

 

 

 
 

After the authors analyzed data in the RfPR group by a constant comparative method, it is obtained the 

result that seven subjects had the same characteristic of RfPR. In this article, the authors described two subjects 

that are S1 (a male) and S2 (a female). According to the result of written answer, the think aloud, and interview 

transcript, the first activity done by the subjects was reading the problem many times. S1 read twice, whereas S2 

read three times. Their reason behind that activity is to more accurate in understanding the information of 

problems such as the universe set of real number, inequality objects, and the problem question. A problematic 

situation met by the subjects appeared when they thought what should be done to determine the solution set. 

They thought hard indicated by silencing for a long time, holding the head, or asking the solution. After thinking 

hard, they arranged a strategy. In the strategy choice step, subjects described the problem at 3 cases. S1 and S2 

explained        as the first case. S1 explained the second and the third case as             and  

      , respectively. Whereas S2 explained the second and the third case as         and        
    , respectively.  

In the strategy implementation step, S1 and S2 determined the property of root value as the first case 

(the first requirement), namely          The subjects gave argumentation that the radicand has to greater 

than or equal to zero in order to the result value is still the element of the real number set. If the radicand is less 

than zero, then the result value is an imaginary number. The imaginary number is not an element of a real 

number set. On the other hand, it is an element of a complex number set. S1 factorized        into    
1  1  . S1 showed equivalent of  +1  1   to  +1  1>0 or  +1  1=0. Further, S1 used theorem in 

real number system such as 1) if      then               or              , and 2) if      then 

    or    . S1 analyzed all solutions possibilities by applying set and logic concepts to take a decision in 

determining the solution set. Moreover, S1 used inequality concept, namely adding/subtracting the same 

quantity to both sides of inequality will get the equivalent inequality with the previous inequality. The solution 

set obtained by S1 was                    . The S1’s written answer in the first case is shown in 

Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

While S2 added 1 to both sides        so it is obtained     . S2 took square root on both sides 

of      so it is obtained    . After getting this result, S2 was silent for a long time while moving the 

forefinger. S2 experienced perplexity and asked the truth of the obtained result. S2 said slowly that “is my 

answer correct? I think there is a problem in my way.” S2 was doubtful and suspicious with her problem solving 

strategy. By this suspicious, S2 did inquiry all solving steps that have to be done. After thinking hard. S2 

realized that her answer was wrong. S2 expressed that there were 2 possibilities of x real number that satisfy 

    , namely            . Her reason was the squaring for every real number in      or      is 

Reasoning 

EE  LPR  GPR PR 

19 10 4 8  

NRfEE  RfEE NRfLPR  RfLPR  NRfGPR RfGPR NRfPR RfPR 

15 4 7 3 2 2 1 7 
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Figure 5. The S2’s written answer in the second case          

greater than or equal to 1. S2 tried to use another strategy for convincing the truth of her solution. S1 factorized 

       so that it is obtained             . S2 used the property that if       then            

   or              . S2 got 2 possibilities, namely                       or        

              . By applying set, logic, and inequality concepts, S2 obtained                     

as the solution set of       . S2 was sure and satisfied with the truth of her answer because she has gotten 

the same result by two different strategies. The thought process done by S2 showed that the characteristics of a 

reflective thinking process. The S2’s written answer in the first case is shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

S2 determined         as the second case. S2 analyzed 3 possibilities of value in     , namely 

positive real number, negative real number, or zero. S2 considered that the left side value of            

was non-negative real number. Furthermore, S2 got the result of her analysis, namely 1) if the left side is non-

negative and the right side is negative, then it does not satisfy the inequality problem because non-negative is 

not less than negative, 2) if the left side is non-negative and the right side is zero, then it does not satisfy the 

inequality problem because non-negative is not less than zero, or 3) if the left side is non-negative and the right 

side is positive, then it satisfies the inequality problem. S2 gave the reason about the third condition, namely 

because the minimum value on the left side of            is zero so the right side is greater than zero. 

Further, S2 subtracted 2 to both sides of        and multiplied 
 

 
  to both sides of the obtained inequality so 

that S2 got the solution set of the second case, that is             . The S2’s written answer in the second 

case is shown in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

S2 determined             as the third case, whereas S1 determined it as the second case. The 

subjects squared both sides of             so that it is obtained              . They justified 

that squaring both sides of the inequality can be done because the value of left side and the right side is non-

negative and positive, respectively. They showed that it is can not be done if one of both sides inequality is 

negative. A counterexample given by S1 is      but             . Whereas S2 gave a counter 

Figure 4. The S2’s written answer in the first case          

 

S2 applied the reflective thinking process  

 

 

 

 

 

The second strategy in the        case The first strategy in the        case 
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example that       but                . The subjects subtracted    and added 1 to both sides so 

that it is obtained           . That result is equivalent to           . They factorized     
       into              . They used the property if      so               or    

         ). They got 2 possibilities  namely                        or                   

     . They also used the concept of inequality, set, and logic to take the decision in determining the solution 

set. They obtained the solution set of           , namely      
  

 
              . The S2’s and 

S1’s written answer in the            case are shown in Figure 6 and Figure 7, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
To determine the solution set of inequality problem, S2 intersected the solution set of the first, the 

second, and the third case. S2 got            . The S2’s written answer in determining the solution set is 

shown in Figure 8. 

 

 

 

 

 
Whereas S1 intersected the solution set of the first and the second case to determine the solution set of 

inequality problem. S1 got      
  

 
             . S1 checked the truth of the solution set by substituting 

some values of x (   ,    , and      ) to inequality problem  S1 explained that     and     

fulfilled            because     and      was correct statement. Whereas the result of substitution 

     did not fulfill            because       is the wrong statement. Therefore, S1 was 

suspicious with the truth of      
  

 
     . S1 experienced a complex perplexity. It seemed when S1 was 

silent for a long time while holding a head. S1 questioned the truth of      
  

 
      as the solution set of 

Figure 8. The S2’s written answer in determining the solution set inequality problem 

Figure 7. The S1’s written answer in the second case              

 

Figure 6. The S2’s written answer in the third case              
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The S1’s written answer  The S2’s written answer 

Figure 11. The S1’s and S2’s written answer when convincing the validity of the solution set 

 

 

 

 

inequality problem. S1 was doubt and curiosity with his solution. S1 said, “My answer maybe is wrong. How 

could it be? How do get the right solution?” Because of those conditions, S1 did inquiry toward his problem 

solving previously. After thinking hard, S1 was sure that      
  

 
      did not satisfy the solution set of 

inequality problem. His thought process indicated that reflective thinking process occurs. S1 argued that for 

showing the statement is wrong it is sufficient to give one counterexample. His counterexample was     . 

Hence, S1 realized that the obtained solution set was incorrect. S1 rechecked the problem solving in the first and 

the second case. S1 found the connection between the first and the second case, namely squaring process can be 

done when the left side and right side of the inequality is non-negative and of positive, respectively. His 

argumentation was because the minimum value on the left side of the inequality is 0 so      has to greater 

than 0. Thus, S1 determined         as the third case (also called by the second requirement). S1 asserted 

that the third case is crucial as the complement of two cases previously. Without involving the third case, the 

solution is not complete. By subtracting 2 to both sides of         and multiplying 
 

 
  to both sides of the 

obtained inequality, S1 found the solution set of the third case, namely             . The S1’s written 

answer in the third case is shown in Figure 9. Furthermore, S1 intersected the solution set of the first, the 

second, and the third case. S1 got            . S1 wrote the solution set of inequality problem as shown in 

Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the conclusion step, subjects concluded that the solution set of            was          
 . Subjects justified that the steps used to solve the problem were right because they have applied the 

mathematical properties and mathematical concepts. They really believed that the obtained result was correct. In 

convincing the result, they gave the general statement. They stated that         for every    . Their 

reason was because                   for every     and the value of       is less than      for every 

   . They also gave argumentation that        for every     because    is greater than   where   is a 

positive real number so that      is always greater than   for every    . They justified that 

                        for every real number in     because applying the transitive property in 

        and       . It shows that they proved the validity of the result generally by including 

algebraic property, transitive property, and order property of real number set. They made the logical inference 

based on the transitive property. In proving the result, they could give a logical reason. According to Harel and 

Sowder [20], their proof scheme is classified by an analytic proof scheme. Whereas if it is viewed by Balaceff’s 

proof taxonomy, their proof is a conceptual proof [21]. Figure 11 below shows their proving to convince the 

validity of the solution set. 

 

 

 

 

 

 

 

 

Figure 9. The S1’s written answer in the third case          

Figure 10. The S1’s written answer after applying reflective thinking 
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The subjects explained well the problem solving in each case. They gave argumentation based on 

intrinsic mathematical properties such as distributive property, inequality property, inequality concept, factoring 

concept, set concept, and logic concept. They experienced the perplexity in problem solving. They felt curiosity 

about their process of problem solving. They doubted the truth of their solution. This leads them to inquire the 

inaccuracy on their solution. After the main matter was founded, they realized that there was something wrong 

with it. Finally, they corrected it. They felt satisfied with the result. This indicates the condition of their steady 

thinking. According to Dewey [12], their mental process can be categorized as a reflective thinking process. It 

can happen because they are doubt or curiosity of what the problem truly is or how exactly a solution is. They 

performed reflective thinking process well because of their tenacity in finding the solution. Moreover, they have 

a deep knowledge of the material and a logical thinking ability.   

Based on the S1’s and S2’s reasoning process in the discussion above, they experienced RfPR. Their 

reasoning was shown by the giving argumentations based on mathematical intrinsic properties but they also 

applied reflective thinking process. The structure of their RfPR is presented in Figure 12. 

                                

   The structure of S1’s RfPR                                              The structure of S2’s RfPR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. The structure of S1’s and S2’s RfPR 

Based on the analysis of subjects group, there were 5 same characteristics in RfPR. The characteristics 

are (1) the existence of giving argumentations based on intrinsic mathematical properties during inequality 

problem solving, (2) the existence of a perplexity state in the problem solving process, (3) the existence of 

awareness about some inaccuracies in the problem solving process, (4) the existence of an inquiry to correct the 

error until finding the solution set of inequality problem, and (5) the existence of steady thinking followed by 

feeling sure and satisfied toward the truth of obtained result. In general, the process of RfPR can be illustrated in 

Figure 13. 
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Students who did RfPR could give logical reasons why the rules/procedures work or can be applied. 

Moreover, they also gave the counterexample if the statement did not work. Students could apply a variety of 

concepts and properties related to the problem solving. The concepts of inequality, factoring, set and logic were 

used to determine the solution set of inequality problem. Students constructed knowledge by connecting 

between what is being faced with the existing knowledge. Students did not memorize the concepts, rules, 

Figure 13. The process of reflective plausible reasoning (RfPR)  

 

Note: 

AIMp :  Argumentation based on 

intrinsic mathematical properties 

RTP :  Reflective thinking process  

 

 

Problem structure 

 

Reasoning structure 
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procedures, or properties but they understood it well by relating to their knowledge previously. The learning 

process students’ RfPR is consistent with the meaningful learning theory [22]. According to the terminology of 

Hiebert and Lefevre [23], students’ knowledge is categorized by conceptual knowledge. Meanwhile, if it is 

viewed by the terminology of understanding, the students have a relational understanding [24] or conceptual 

understanding [25]. 

 

V. Conclusion 
In this study students performed plausible reasoning well in the problem solving. Students also could 

overcome the difficulty during the problem solving because of applying reflective thinking process maximally. 

Therefore, in the learning process the educators should provide greater opportunities for students to take 

reflection process so that they can find the solution of the problem and perform reflective plausible reasoning 

optimally. Another result of this study is a few students performed plausible reasoning during the inequality 

problem solving. Most students used the learning experience previously without deep understanding. In other 

words, many students performed EE. This can also be found in previous studies (e.g., [7], [9], [10]), which 

reveal that EE is more dominant than PR. Moreover, many students applied superficial reasoning. Therefore, it 

is very essential for an educator to familiarize students to use plausible reasoning by explaining the process of 

solving the problem, justifying the problem solving the steps, and convincing the truth of the result. Further 

research is required to examine the students’ failure in plausible reflective reasoning. In addition, there is still an 

open study to investigate the trigger of students doing EE. 
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